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Summary

This document describes the progress made so far in identifying rare events in industrial
processes with the ultimate aim of addressing Predictive Maintenance objectives. We have
introduced different methods for identifying rare events in datasets with a main focus on the
QARMA algorithm. We present two sets of numerical results related to i) the Tennessee
Eastman Process and ii) a fault selection on power grids. The research is performed within
the context of the EU CHIST-ERA project FIREMAN.
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1 Introduction

1.1 Objective of the document

The objective of Deliverable 2.3 is to collect and document in a coherent manner all results of
the research that has been carried out in the field of rare-event identification using Machine
Learning (ML) and Data Mining (DM) techniques, within the context of FIREMAN project.
Some further explanations are in order: with the term ”rare event” we not only mean something
that happens relatively infrequently, but also something that has an effect on an industrial
process, that will eventually cause a need for some maintenance or other corrective action. In
this context, therefore, rare-event identification certainly includes learning models that detect
as early as possible the existence of a fault in an industrial process, and in fact it is this
modeling and algorithmic development that plays an important role in this research. However,
the consortium partners also seek to develop models that will learn root causes of ”tear-and-
wear” processes that eventually cause significant faults in a process that are significant from
a production engineering point of view.

1.2 Structure of the document

The remainder of this document is structured as follows: Section 2 describes important rare
events in general, with the help of dimensionality reduction techniques. Section 3 describes
ML- and DM-based methods and pays particular attention to the QARMA algorithm and its
variants (i.e., R4RE) for detecting rare events; here the focus is essentially on models that can
learn accurately minority (i.e., rare) classes in the presence of significant class imbalances in
the dataset. Section 4 contains preliminary numerical results along with a discussion on the
quantitative insights of the proposed algorithms. Finally, Section 5 provides our concluding
remarks.

2 Important Rare Events

2.1 Definitions and Preliminaries

Data dimensionality refers to the cardinality of the feature set used to describe a dataset. Due
to the vast amount of available data used to describe a certain event, dimensionality reduction
arises as a common necessity to improve the efficiency of learning algorithms. Considering that
not all characteristics of an event are relevant to its analysis, dimensionality reduction allows
us to reduce the cardinality of the feature set without loosing a lot of actual information about
the event under analysis. There are several techniques for feature selection and identification of
the most relevant features that allow to model the event – often these techniques preserve the
meaning of the selected features; as well as, feature extraction that reduces the dimensions
of the data. Principal Component Analysis (PCA) is a dimensionality reduction approach
that applies orthogonal transformation to convert correlated sets of features into a linear
uncorrelated one. Similarly, Linear Discriminant Analysis (LDA) describes dependent feature
as a linear combination of other features. An overview of those techniques and their variations
is provided in [1].
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2.2 Dimensionality reduction, key features and relations

Dimensionality reduction in the context of FIREMAN is related to the amount of processing
required for fault detection; in this regard, time-series compression by event-driven approaches,
as in [2], allows data compression before the transmission. This technique, not only reduces the
amount of traffic generated by the network which in turn leads to better resource allocation and
interference handling, but also reduces the amount of redundant data in the aggregator and
extends the lifetime of the wireless devices [3]. In [2], the authors propose devices in a smart
grid scenario to transmit only when two events are identified: i) a certain amount of energy
consumption is reached; or ii) there is a sudden change in the power demand. They compare
these results with a time-based scheme with 30 minutes of sampling period. The event-based
scheme presented a better signal reconstruction compared to the time-based. In their results,
they adjusted their threshold parameters such that devices would transmit a similar amount
of messages per day. Thus, it is important to note that the event-based scheme requires
more information regarding the measured process. Hence, they propose usage of real-time
algorithms that could adapt to these thresholds with historical data. Another technique with
similar objectives is using Graph Signal Processing, as in [3], which allows the downsampling
of information around correlated devices. Here, the authors divide the sensors into several
subsets that are able to reconstruct the desired signal. Their novel sampling method focuses
on increasing the network lifetime and ensures that all devices perform the same amount of
transmissions on average, thus presenting similar energy consumption behavior.

The random forest algorithm is based on a smart way of exploiting a collection of decision
trees. Intuitively, a decision tree can be thought of as a series of yes/no questions asked about
a dataset which would eventually lead to a classification of an input sample. A decision tree
is formed by determining the questions that, when answered, lead to the greatest reduction in
Gini Impurity. Gini Impurity is a measure of how often a randomly chosen element from a set
would be incorrectly labeled if it was randomly labeled according to the distribution of labels
in a subset of a tree. However, since the depth of the tree affects the variance and the bias,
to limit the depth of the tree we combine many decision trees into a single ensemble model
known as a random forest. The key concepts related to the random forest approach are:

1. Random sampling of training data points when building trees;

2. Random subset of features considered when splitting nodes.

Random Forests are often used for feature selection in a data science workflow, because they
naturally rank the features by how well they improve the purity of the node. Nodes with
the greatest decrease in impurity happen at the start of the trees, while nodes with the least
decrease in impurity occur at the end of trees. By pruning trees below a particular node, we
can create a subset of the most important features.

2.2.1 Selecting Features Given an Extracted Rule-Set

It is also worth noting that in the context of FIREMAN, we have developed a hybrid
greedy/Breadth-First Search (BFS) approach that takes as inputs an extracted set of rules
that apply on a given set; and it outputs a near-minimum cardinality set of variables that are
used in an appropriate subset of the input rules with the property that this subset of the rules
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covers at least a (user-defined, e.g., 95%) percentage of the training instances that the entire
input rule-set covers. Of course, for this technique to work, and algorithm such as QARMA
(presented in details in Section 3) that guarantees to find a rule-set that maximally covers a
training dataset must have run before to produce the required input rule-set.

An implementation of this hybrid algorithm mentioned above is open-sourced, avail-
able in the package popt4jlib.MinExplainSet in the library (https://github.com/
ioannischristou/popt4jlib). The pseudo-code is given in Algorithm 1, where nmin, K
are user-defined values for controlling the search.

Algorithm 1: Min. Explaining Variables Algorithm

1 sols← ∅;
2 Q← {∅};
3 while |Q| > 0 do
4 vars← Q.pop();
5 vars.add(targetV ar);
6 satInsts← getSatisfyingInstances(vars);
7 if |satInsts| > nmin then
8 sols.add(vars);
9 return getBest(sols);

10 vars.remove(targetV ar);
11 candV ars← getBestOfRemainingV ars(vars,K);
12 while |candV ars| > 0 do
13 v ← candV ars.pop();
14 if index(v) ≤ maxa∈varsindex(a) then
15 continue;

16 Q.add(vars ∪ {v})

17 return getBest(sols)

As shown in Algorithm 1, the function getBest(sols) accepts as input a set of sets of
variables and returns the one among them that has maximum training set coverage. The
function getSatisfyingInstances(vars) receives as input a set of variables and returns the set
of training instances that satisfy at least one of the rules whose preconditions and postcondition
are a subset of vars. Finally, the function getBestOfRemainingV ars(vars,K) returns the
top K variables x that are not in the set vars when the variables are sorted in ascending
order of the quantity (|var|+ 1)/(getSatisfyingInstances(vars∪ {x}) + 1) and represents
a greedy evaluation of the current cost of adding a variable to a candidate set.

FIREMAN adopts time-series compression as proposed by the event-driven approach, in
addition to a Mutual Information (MI) entropy reduction technique that is used to infer how
variables are correlated. This technique is detailed in Section 3.
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3 Machine Learning Methods and QARMA

ML methods are statistical methods in nature whose main goal is to discover –statistically
significant– dependencies between variables in data. Over the years, a vast array of different
methods have been developed ranging from methods that are applicable to most datasets to
highly specialized methods that are developed under specific assumptions on the nature of
the input datasets; for example, many methods have been developed for datasets for which
the feature variables -other than the class, or target variable- are all assumed to have no
dependencies to each other. Most methods are also developed under the assumption that all
classes are more or less equally represented in the training dataset (balancing assumption),
etc. Rule-based learners, are particularly well-suited to rare-event identification exactly because
they do not make the class-balance assumption just mentioned, which clearly does not hold
when we seek to identify very small minority classes.

3.1 QARMA

QARMA is an efficient novel cluster–parallel algorithm for mining Quantitative Association
Rules with a single consequent item, and many antecedent items with many different, not
necessarily the same, attributes, in large multi–dimensional datasets [4],[5]. Using the stan-
dard support-confidence framework of Qualitative Association Rule Mining, it extends the
notions of support, confidence and many other ”interestingness” metrics so that they apply
to quantitative rules. QARMA is built on a set of premises, as follows:

1. Items of any valid quantitative rule (antecedents plus consequent), must form a frequent
itemset in the classical Boolean Association Rule Mining sense in the dataset for the given
minimum support threshold specified; therefore, to produce all valid quantitative rules,
it is sufficient to consider only rules whose items form a frequent itemset, as produced
by an algorithm for frequent itemset mining in transactional databases stripped of any
quantitative information, e.g., FP-Growth.

2. Producing all valid quantitative rules with given support and interestingness levels in a
dataset is at face value an impossible task: indeed, if there is a single valid quantitative
rule, there are infinitely many different quantitative rules that have the required support
and interestningness level thresholds on the (finite) dataset: to see how this is so, given
such a rule, simply subtract any sufficiently small number ε > 0 from any antecedent
item’s quantified attribute value, to obtain a rule with the same support and interest-
ingness as the original one. This leads us to the notion of rule dominance as a criterion
for excluding from the result such useless rules.

3. The anti-monotone property of a rule’s support (analogous to the same property in
classical frequent itemset mining): given a quantitative rule, restricting any of the rule’s
item attributes to values above any threshold, can only decrease the rule’s support.
Thus, as soon as an item attribute in a rule restricts it so much that its support drops
below the minimum required level, any further restrictions of this partially quantified
rule are useless, and so the rule is discarded from further processing.
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4. Based on an appropriate definition of rule dominance, a valid QAR r specifying a set
of antecedent items B and a consequent item I having length l = |B ∪ I| may only
be dominated by a rule of smaller length, or another rule having the same antecedents
and consequent item as itself. Combined with the transitive property of dominance, this
means that if all valid non-dominated rules of length less than l are generated before
r is considered, and if all other quantifications of the base qualitative rule that restrict
the rule less than the current restrictions have already been examined, then if r is not
dominated by any of the rules that have already been found, the rule is guaranteed to
be a valid non-dominated rule.

5. The fifth (and final) observation is that in order to generate all valid non-dominated rules,
it is sufficient to consider quantifications of a rule considering only as value thresholds
for the item attributes, values that actually appear in at least one transaction of a user
history.

QARMA can be configured to produce rules of the form I1.attr1 ∈ [l1,1, h1,1]∧ . . . In.attrm ∈
[ln,m, hn,m] =⇒ J0.p ≥ v or alternatively to produce rules of the form: I1.attr1 ∈ [l1,1, h1,1]∧
. . . In.attrm ∈ [ln,m, hn,m] =⇒ J0.p = v; the latter form is very useful when it comes to
supervised classification problems where the value of the target item attribute is essentially
the class variable that we seek to learn. The QARMA algorithm works as follows: first, we
apply any algorithm for generating all frequent itemsets in the input dataset according to the
specified minimum support sought, and the frequent itemsets are partitioned into itemsets of
increasing length (cardinality.) Then, the algorithm proceeds sequentially to produce all valid
quantitative association rules from each itemset of length 2, then 3, then 4, etc. Within each
phase of producing all valid rules of length l = 2, 3, ..., the algorithm considers in parallel all
frequent itemsets of length l. For a given itemset, it produces all possible rules (with each
attribute in the rule being unquantified in the beginning); for each such initially unquantified
rule, a possibly different CPU core maintains a local rule set R (initially empty) and runs a
modified BFS procedure that first assigns the consequent attribute to the highest possible
value, and, as long as the resulting partially quantified rule has support above the threshold
required, it adds it to a queue data structure Q. While this queue is not empty, the first
rule inserted in the queue is retrieved and removed from the queue, and for each attribute
that has not been quantified in it yet, the algorithm creates as many new rules as there are
different values in the dataset for the attribute being examined in ascending attribute order
value and enter the queue Q in this order, but only if the newly quantified rule exceeds the
minimum support requirement. If the partially quantified rule also meets minimum confidence
(or any other metrics set), then it is checked against the current set of local rules R to see
if it is dominated by another rule in R. If no other rule in R dominates the current rule, the
current rule is added in the set R. After having ran this BFS process in parallel for all frequent
itemsets of length l, the various CPUs participating in the run, synchronize so as to get all
rules from all the other ones, before moving to process the frequent itemsets of length l + 1.

Once the set of all non-dominated rules is computed, a classifier based on an ensemble of
these rules works as follows:

1. Select all rules whose antecedent conditions are satisfied by this instance and add them
to the set F ;
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2. Sort the ruleset F in decreasing order of confidence and decreasing order of support on
the training set;

3. Remove all but the top-100 rules of the sorted set F ;

4. Each rule in F carries a weight equal to its confidence on the training set; decide as the
instance’s class the weighted majority vote of the rules in F .

3.2 QARMA Benefits

As discussed above, QARMA –and its variant, R4RE, detailed in [4]– have a number of prop-
erties that make it particularly attractive for this particular domain of application. Its results
are by default explainable: rules of the form < precondition− set > =⇒ < postcondition >
are immediately understood by all humans, experts and non-experts alike, therefore QARMA
belongs to the domain of so-called eXplainable AI (XAI). QARMA also has the nice property
of producing rules that maximally cover the training set, a feature that is not only of theoret-
ical interest, but also of practical one, because it allows the development of the greedy/BFS
algorithm, described earlier in subsection 2.2.1, that can produce a minimal set of attributes
that ”explain” maximally the dataset. Last but certainly not least, QARMA may extract rules
with arbitrarily (user-defined) small support and large confidence, making it ideal for datasets
with very large class imbalances.

4 Numerical Results

4.1 Tennessee Eastman Process

4.1.1 Event-driven Data Acquisition

The main idea of an event-driven approach for this application is to perform data compression
in order to transmit the meaning of information from the data acquisition point to the data
fusion point. This approach can be described using the following steps: i) input data from all
52 sensors (N); ii) variable average estimation and margin selection (90% of lowest/highest
values) from normal operation; iii) at every time slot (k) for each variable, if the values are
out of the margins the sample is transmitted, otherwise, if nothing is received at the data
fusion point the variable will maintain the average value estimated from the previous step; iv)
compression rate calculation for each variable. The limit values for margin selection for each
variable were chosen arbitrarily. An example of this approach is seen in Fig. 1 where the signal
obtained from the sensors is shown with its limits. The samples transmitted are only the ones
that are out of the upper and lower limits as seen in Fig. 2. This setup allows to transmit less
data via any communications system. In the example mentioned above the compression rate
is 92.60%, this means only about 7.4% of the samples are transmitted. The pre-processed
time series based on the proposed event-driven method will serve as inputs to the data fusion
and analytics, where anomalies should be detected, identified and diagnosed.
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Figure 1: Signal from variable 1 at data acquisition point (before transmission) for fault number
2 of Tennessee Eastman dataset.
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Figure 2: Signal from variable 1 at data fusion point (after transmission) for fault number 2
of Tennessee Eastman dataset.

4.1.2 Data Fusion based on Mutual Information

In order to further reduce the amount of processing required for fault detection, on top of the
time-series compression as proposed by the event-driven approach, the proposed framework
determines how the process variables are related to each other to discover and exploit their de-
pendencies. The interdependencies between the process variables are determined automatically
from the sampled measurements in the Tennessee datasets. Specifically, MI entropy reduction
technique is used to infer how variables are correlated. The MI quantifies the amount of in-
formation that each variable contains about the other ones [6]. The tools used to determine
correlations among the variables used in this work represents the distances between variables in
terms of their statistical closeness, then it quantifies the correlation by providing links between
the variables. Finally, it assigns directionality to the links [7]. Fig. 3 shows that aside from
the auto-correlation, strong cross-correlation is present between a high number of variables;
in fact, a high correlation above 80% is present in 23% of the variables (12 out of 52) while
a modest correlation above 50% is present in 65% of the variables (34 out of 52).

As an example of statistical closeness, Fig. 3 demonstrates the correlation for the 52 process
variables in the Tennessee datasets. This result showcases that not every single variable needs
to be observed at every given moment but, depending on the fault under investigation, it is
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Figure 3: Correlation between Process Variables

possible to observe variables carrying a high amount of MI with other variables involved in the
process. This reduces both data and computational load considerably.

4.1.3 Quantitative Association Rule Method for Anomaly Detection

Quantitative association rule mining is a natural extension of classical qualitative asso-
ciation rule mining where the difficult task is the extraction of frequent itemsets from
a dataset containing transactions. The extracted rules are statistical rules of the form
Item1ANDItem2...ANDItemk =⇒ Itemn, that hold with certain support and confidence
values (or other metrics) that are above user-defined thresholds. Association rule mining is
one of the most heavily researched areas in data mining to this date. In our context, items
correspond to the features in our dataset, and transactions are in one-to-one correspondence
with the rows of the dataset; the consequent item (Itemn) in particular is constrained to al-
ways be the target variable in our dataset. The problem then becomes one of quantifying each
item in each (qualitative) rule extracted from the dataset by constraining its value to lie in a
specified interval, so that the target variable assumes a particular value. This is achieved by
a modified parallel BFS algorithm, i.e., QARMA, which guarantees that all (and none other)
non-dominated quantitative association rules that hold in the dataset will be found (see [8]).

In the case of the Tennessee dataset in particular, the dataset is fully dense in the sense
that every row contains values for every dataset feature, which makes the application of the
qualitative association rule mining part useless. Instead, we construct all itemsets of size less
than 4, and quantify each one of them separately, and in parallel, making sure that all itemsets
of size s are fully processed before starting to process itemsets of size s+1. To take into account
the time-dependent nature of the data, whereby the values of any feature in the dataset are to
some degree dependent on the values at the immediate previous times, we expanded the data
to include for each feature, the difference between the feature’s value and the feature’s value in
the previous two time-steps, resulting in a dataset having 156 different fully dense features. The
QARMA algorithm took several days to run on this expanded Tennessee dataset, producing a
total of 63008 non-dominated rules, that could predict all different modes of operation except
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mode 0 (normal operation), and hard-to-detect faults 3, 9 and 15 (none of the 63008 rules
imply faults 3, 9 or 15). The distribution of the rules among the faults is also highly skewed:
faults 6 and 18 are implied by 23624 and 23884 rules respectively, whereas faults 5, 10 and 21
are implied by 9, 3, and 8 rules respectively. During testing, an instance for which more than
10 rules fire, is predicted to belong to the fault that is specified by the majority of rules firing
on that instance. Using this majority vote rule ensemble, we obtained an overall rule-accuracy
that exceeds 62% on the test set. This accuracy is significantly better than the one reported
by decision trees (J48), or artificial neural networks (MultiLayerPerceptron) as implemented in
the WEKA ML/DM software suite, all of which reported accuracy less than 50% on the test
set.

We also implemented another modified BFS algorithm to search to find a minimum car-
dinality set of variables that contain all the variables necessary for an appropriate subset of
the discovered rules to cover 85% of all instances that the entire set of rules cover; we say
that ”rule r covers instance i” if and only if in the instance i the values of the features that
form the antecedents in rule r are within the intervals specified for them by the rule, and the
instance indeed belongs to the operation mode (fault number) that is predicted by the rule.
Interestingly, only 14 of the 156 variables are enough to ”explain” 85% of the entire dataset
covered by the rules found; this result implies that possibly a much smaller set of variables
need be monitored in order to derive safe conclusions about the state of the process. The
total rules found covered more than 70% of the training set. We consider our first results as
encouraging in that rules using only up to 2 features at a time are able to form an ensemble of
rules that outperformed other well-known ML algorithms in test-set performance. We expect
that dimensionality reduction will allow larger number of antecedent features to be examined
and eventually provide much higher accuracies measured by detection rates/false alarm rates
per class.

4.2 Fault Classification in Power Grids

The generated dataset was split into two subsets: 75% of a random shuffle of the dataset
was kept for training and the remaining 25% was used to validate the accuracy of the trained
models. The exact same split was used for all experiments with all different algorithms. Table
1 shows the results of running several well-known ML algorithms for supervised learning on
the produced dataset, and Fig. 4 shows the results for the classification task. The accuracy
achieved with the Deep Learning (DL) model setup was remarkably high, 98.47%. This high
accuracy is due to the large size of the simulated fault dataset and equally importantly because
of the balance between the sample sizes of the various classes; the strong success of the DL
model is also because all the voltages and currents from both lines were available, including
neutral currents. Further, perfect communication and without any problems related to latency,
availability, or synchronization was considered. With this setup, the importance of availability
of all features was tested. Table 2 lists the number of features tested, and Fig. 5 shows the
results with Artificial Neural Network (ANN). With fewer features, the ANN does not perform
as well, emphasizing the importance of neutral current estimation. However, when only one-
end currents and voltages are available, the accuracy of the algorithm is still adequate for the
task.

QARMA was also ran on the same training set with the user-defined support threshold
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Table 1: ML Results on the Fault-Grid Dataset

Classifier Accuracy

Decision Tree 94.62%
ANN (1 hidden layer) 95.18%
ANN (2 hidden layer) 98.47%
SVM 89.05%
Ripper-k 86.17%
Näıve Bayes 59.42%
Logistic Regression 78.47%
AdaBoost.M1 17.81%
QARMA 98%
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Figure 4: Fault classification task confusion matrix

of 3.5% and the confidence threshold of 90% to obtain 5333 rules covering 97.8% of the
entire training set. Then, a slight variant of the decision making algorithm described in the
previous section, based on weighted voting, was used: for each instance in our test set, as
long as the instance is covered by more than 100 rules, the instance’s class is decided upon
by the majority vote of the top 10 firing rules having the highest confidence on the training
set; instances that fail the minimum coverage requirement are not classified. This algorithm
resulted in an accuracy more comparable with the one obtained by DL, around 98% but at the
following cost: a longer training time (around 2.5 h of wall clock time on a 3rd generation Intel
core i-7 CPU with 8 logical cores). For a small percentage of testing instances, approximately
4%, QARMA was not able to provide a decision, because of the small number of rules firing
on them. However, we expect that QARMA and its decision-making components will compare
equally well or even outperform DL techniques in training sets that are more highly skewed.
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Table 2: Feature selection on original dataset

Round Feature

1 all features (local and remote current
and voltages including IR)

2 LIA , LIB , LIC , LIR

3 RIA , RIB , RIC , RIR

4 LIA , LIB , LIC , LVA
, LVB

, LVC

5 RIA , RIB , RIC , RVA
, RVB

, RVC

6 LIA , LIB , LIC

7 RIA , RIB , RIC

8 LVA
, LVB

, LVC

9 RVA
, RVB

, RVC

A
cc
u
ra
cy

0.9593

0.8966
0.8803

1 2 3 4 5 6 7 8 9

Round

0.9847

0.9845

0.9325

0.8976

0.8386

0.7561

Figure 5: Fault classification task confusion matrix

On the other hand, QARMA produces as a model a set of quantitative rules that are much
easier to understand and reason about than most other models, and DL models, in particular.
This makes QARMA results much easier to explain to humans than any other model. Every
extracted rule is trivially checked against the training dataset for validation purposes, and is
also trivial to understand “what it means,” as the precondition of the rule are nothing more
than a conjunction of restrictions of the attributes that comprise the rule’s antecedents to
certain intervals. This ease of understanding of rules is what has made them particularly
attractive since the beginning of the AI and ML research. In fact, already since the 1980s,
there have been attempts to extract the knowledge that is embedded in neural network models
into sets of rules [9] as such rule sets were recognized from the beginning as the most obvious
knowledge representation that can exist. Therefore, QARMA is, in general, a particularly good
fit for the newly emerging XAI paradigm, the term “explainable” meaning that the resulting
model that the algorithm produces can be easily understood by humans.

We also ran an symmetrical algorithm method using the dataset for this paper. The method
is used by one top relay manufacturer. The results can be seen in Fig. 6. The accuracy of
this method for single phase faults can is represented in Table 3 and also the false positive
single phase detection. False positive in this context is defined as the number of single-phase
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Figure 6: Fault classification by symmetrical angle method

Table 3: Results obtained by replicating symmetrical method

Dependability Security

Local end Remote end Local end Remote end
AG 98.05% 98.86% 910 910
BG 95.53% 95.94% 896 909
CG 97.50% 97.29% 880 880

faults selected by the symmetrical method given that in the real fault was involved at least
2 phases. Under those conditions, the classification strategy takes the system to a situation
less secure than with a tripolar tripping. The results shown in Fig. 4 demonstrate that
errors on the proposed method occurred in the lack identification of some faults. Since fault
selection systems are meant to be associated with protection algorithms, those errors would
cause an unnecessary tripolar breaker opening - security error. Considering an interconnected
system, security errors are less likely to cause system wide power outages than protection
dependability errors. Therefore, the proposed solution would promote better system stability
than the traditional method’s results in Table 3.

5 Conclusions

This report investigated the identification of rare events, mainly focused on the performance
of QARMA algorithm. Our results indicated that QARMA is capable of identifying in an
explainable manner the relevant relations between features while also indicating ways to reduce
the dimensionality of the dataset. Numerical results indicated that QARMA is at this point
the most appropriate candidate to be deployed in the solution to be proposed by FIREMAN.
This deliverable related to T2.3 provides valuable inputs to WPs3-5.
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Appendix

Tennessee Eastman model

The dataset material consists of several faulty cases of an industrial plant, as produced by
the Tennessee Eastman problem [10]. The process has five major equipments, namely a
condenser, a vapor-liquid separator, a reactor, a product stripper, and a recycle compressor
(Fig. 7). Its objective is to obtain the products G and H from the reactants A, C, D and
E. This is reached by a set of four chemical reactions, in which components B and F are,
respectively, an inert and a byproduct. More details can be found in [11, 12]. This benchmark
is suitable to evaluate process monitoring schemes and control strategies based on data driven
analysis. Besides the normal operation, 21 abrupt or incipient faulty conditions caused by
common disturbances in practice are simulated [13]. There are 52 monitoring variables or
features, being 11 manipulated variables and 41 measured variables. Once a faulty condition
occurs, all are generally affected with changes in their respective values.

The Tennessee dataset was generated in a process simulator that has been widely used by
the process monitoring community1. It is composed by 22 subsets named dXX te.dat, where
XX = 0, 1, 2, · · · , 21. The file d00 te.dat refers to the normal operating condition. Each
of the other ones regards to a particular fault, that is, a different shift from this reference
condition. The subsets consist of 960 observations of the 52 variables, which are sampled
every 3min with a Gaussian noise. The faults are introduced after 8 simulation hours. Table
4 presents the proposed framework applied in TEP, which provides the boundary conditions of
the anomaly detection design.

Figure 7: Process flow diagram of the Tennessee Eastman problem [12].

1https://github.com/camaramm/tennessee-eastman-profBraatz
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Table 4: Proposed framework applied in TEP

Q# Answer

Q0 Lack of accuracy to detect anomalies (21) from measurements
Q1 Each of the 52 variables are sensors, no other can be added
Q2 Periodic sampling; all 52 variables are sync (3 min.)
Q3 It can be considered as in [14]
Q4 Not constrained; freedom to test as in [15]
Q5 Open question; focus of research in the field
Q6 Open question; focus of research in the field

Fault classification model

A 400 kV, 50 Hz power system (Fig. 8) was simulated to extract features and then generate
the dataset of currents and voltages based on the DFT at a fault point (when there is a fault).
The electrical system under study is composed of a double-circuit transmission line typical, for
example, in Finland and other European countries. These types of lines represent a challenge
for correct fault identification and selection owing to the strong impact of mutual impedance
on the fault resistance. As for the communication channel, data were gathered by Intelligent
Electronic Devices (IED) from both ends and sent via a wireless link (e.g., 4G or 5G) to the
fault selector, as shown in Fig. 8.

Figure 8: 400 kV double-circuit transmission line

The training and testing datasets were collected in the preprocessing phase. All the simula-
tions were carried out in the MATLAB/Simulink environment; these simulations were prepared
with the specifications shown in Table 5. Both normal operations and different fault types
(10 in total) were simulated along with different fault resistances (24), fault inception angles
(2), line parameter errors (5), high and low power flow (2), and fault locations along the line
(9). The simulation comprise 20160 simulation rounds to collect statistically significant data.
The resulting dataset is publicly available upon request to the corresponding authors, and will
be shortly made available as open-source. The transmission line parameters of the line from
which the one-end signal datasets were gathered are listed in Table 6.
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Table 5: Simulation input parameters

Fault Training dataset Testing dataset

Type
None, AG, BG, CG, None, AG, BG, CG,
ABG, BCG, CAG, AB, ABG, BCG, CAG,
AB, BC, CA, ABC BC, CA, ABC

Resistance (Ω)
0.01, 0.1, 1, 5 and random

10–200 (steps of 10)
Distance (%) 10–90 (steps of 10) random
Inception angles 2 (45◦ and 90◦) random
Power flow variation 2 random
Line parameter error 5 random
Total size 15120 5040

Table 6: Transmission line parameters

Parameter Transmission Line L-R

Voltage (kV) 400
Length (km) 220
Positive-sequence resistance (Ω/km) 0.0033564
Positive-sequence inductance (H/km) 0.00057347
Positive-sequence capacitance (F/km) 2.0423e−8

Zero-sequence resistance (Ω/km) 0.27073
Zero-sequence inductance (H/km) 0.0039052
Zero-sequence capacitance (F/km) 7.9939e−9
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